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Abstract. The ground and a few excited states of the beryllium atom in external uniform magnetic fields
are calculated by means of our 2D mesh Hartree-Fock method for field strengths ranging from zero up to
2.35×109 T. With changing field strength the ground state of the Be atom undergoes three transitions in-
volving four different electronic configurations which belong to three groups with different spin projections
Sz = 0,−1,−2. For weak fields the ground state configuration arises from the 1s22s2, Sz = 0 configuration.
With increasing field strength the ground state evolves into the two Sz = −1 configurations 1s22s2p−1

and 1s22p−13d−2, followed by the fully spin polarised Sz = −2 configuration 1s2p−13d−24f−3. The latter
configuration forms the ground state of the beryllium atom in the high field regime γ > 4.567. The analo-
gous calculations for the Be+ ion provide the sequence of the three following ground state configurations:
1s22s and 1s22p−1 (Sz = −1/2) and 1s2p−13d−2 (Sz = −3/2).

PACS. 32.60.+i Zeeman and Stark effects – 31.15.Fx Finite-difference schemes –
31.15.Ne Self-consistent-field methods

1 Introduction

The behaviour and properties of atoms in strong magnetic
fields has become a subject of increasing interest during
the past two decades. One motivation for this is certainly
the astrophysical discovery of strong fields on white dwarfs
and neutron stars [1–3]. On the other hand the competi-
tion of the diamagnetic and Coulomb interaction causes a
rich variety of complex properties which are of interest on
their own.

For a long time the investigations in the literature fo-
cused on the hydrogen atom (for a list of references see,
for example, [4–7] and references therein). As a result of
the corresponding investigations the absorption features
of certain magnetic white dwarfs could be understood in
detail and a modelling of their atmospheres was possible
(see Ref. [8] for a review up to 1994 and [9] for more recent
references). Detailed spectroscopic calculations were car-
ried out recently for the helium atom in strong magnetic
fields [10]. These calculations allow to identify spectra of
other, namely helium-rich objects, including the promi-
nent white dwarf GD229 [11]. On the other hand a num-
ber of new magnetic white dwarfs have been found whose
spectra are still unexplained (see, e.g., Reimers et al. [12]
in the course of the Hamburg ESO survey).
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Investigations on the electronic structure in the pres-
ence of a magnetic field appear to be quite complicated
due to the intricate geometry of this quantum prob-
lem. For the hydrogen atom the impact of the compet-
ing Coulomb and diamagnetic interaction is particularly
evident and pronounced in the intermediate regime for
which the magnetic and Coulomb forces are compara-
ble. For different electronic degrees of excitation of the
atom the intermediate regime is met for different abso-
lute values of the field strength. For the ground state
this regime corresponds to field strengths around γ =
1 (for the magnetic field strength as well as for other
physical values we use atomic units and, in particular,
γ = B/B0, B0 corresponds to the magnetic field strength
B0 = ~c/ea2

0 = 2.3505 × 105 T). Both early [13,14]
and more recent works [4,15] on the hydrogen atom have
used different approaches for relatively weak fields (the
Coulomb force prevails over the magnetic force) and for
very strong fields (the Coulomb force can be considered as
weak in comparison with the magnetic forces which is the
so-called adiabatic regime). A powerful method to obtain
comprehensive results on low-lying energy levels of the
hydrogen atom in particular in the intermediate regime is
provided by mesh methods [5]. For atoms with several elec-
trons there are two decisive factors which enrich the pos-
sible changes in the electronic structure with varying field
strength compared to the one-electron system. First we
have a third competing interaction which is the electron-
electron repulsion and second the different electrons feel
very different Coulomb forces, i.e. possess different one
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particle energies, and consequently the regime of the in-
termediate field strengths appears to be the sum of the
intermediate regimes for the separate electrons.

Opposite to the hydrogen atom the ground state wave-
functions of the multi-electron atoms change their sym-
metries with increasing field strength. It is well-known
that the singlet zero-field ground state of the helium atom
(1s2 in the Hartree-Fock language) is replaced in the high-
field regime by the triplet fully spin polarised configura-
tion 1s2p−1. For atoms with more than two electrons the
evolution of the ground state within the whole range of
field strengths 0 ≤ γ < +∞ includes multiple intermedi-
ate configurations besides the zero-field ground state and
the ground state corresponding to the high field limit. In
view of the above there is a need for further quantum me-
chanical investigations and data on atoms with more than
two electrons in order to understand their electronic struc-
ture in strong magnetic fields. Our approach allowed us to
obtain the first conclusive results on the series of ground
state configurations for the Li [16] and C [17] atoms. These
results go substantially beyond the previously published
ones [18]. A previous work on the beryllium atom [19] fo-
cused on problems associated with the symmetries of the
Hartree-Fock wavefunction of the low-field ground state
1s22s2 of this atom. For strong fields the 1s22s2 state rep-
resents a highly excited state. In a very recent investi-
gation [20] the high-field regime has been addressed and
the fully spin-polarised ground state configurations for all
atoms with nuclear charge numbers 1 ≤ Z ≤ 10 have been
identified and studied. We therefore know for both very
weak and very high fields the ground state configurations
of the Be atom and their properties. For the intermediate
regime however no investigations have been performed so
far. The present work closes this gap and yields the ground
state (properties) for arbitrary field strengths 0 ≤ γ ≤ ∞.
As we shall see the zero field ground state configuration
1s22s2 remains the ground state for 0 ≤ γ ≤ 0.0412 a.u.
and the fully spin-polarised configuration 1s2p−13d−24f−3

discussed in reference [20] becomes the ground state for
γ ≥ 4.567 a.u. The electronic structure of the Be+ ion is
investigated as well. In order to be self-contained we pro-
vide in the following a brief account of our computational
method and our conceptual approach to the search for the
ground state configurations.

2 Method

The computational method applied in the current work
coincides with the method described in our works [5,19,
21,22] and applied afterwards in [16,17,23,20]. We solve
the electronic Schrödinger equation for the beryllium atom
in a magnetic field under the assumption of an infinitely
heavy nucleus in the unrestricted Hartree-Fock (UHF) ap-
proximation. The solution is established in the cylindrical
coordinate system (ρ, φ, z) with the z-axis oriented along
the magnetic field. We prescribe to each electron a def-
inite value of the magnetic quantum number mµ. Each
one-electron wave function Ψµ depends on the variables φ

and (ρ, z)

Ψµ(ρ, φ, z) = (2π)−1/2e−imµφψµ(z, ρ) (1)

where µ indicates the numbering of the electrons. The re-
sulting partial differential equations for ψµ(z, ρ) and the
formulae for the Coulomb and exchange potentials have
been presented in reference [21]. These equations as well
as the Poisson equations for inter-electronic Coulomb and
exchange potentials are solved by means of the fully nu-
merical mesh method described in references [5,21]. The
finite-difference solution of the Poisson equations on sets of
nodes coinciding with those of the Hartree-Fock equations
turns out to be possible due to a special form of uniform
meshes used in the present calculations and in references
[16,17,19]. A discussion of these meshes is given in refer-
ence [24].

Our mesh approach is flexible enough to yield precise
results for arbitrary field strengths. Some minor decrease
of the precision appears for electronic configurations with
big differences in the spatial distribution of the electronic
density for different electrons. This situation is typical
for those electronic configurations which do not represent
the ground state at the corresponding field strengths (e.g.
1s22s2 for very strong fields or 1s2p−13d−24f−3 (see be-
low) in the weak field regime). The precision of our re-
sults depends, of course, on the number of mesh nodes
and can be always improved in calculations with denser
meshes. Most of the present calculations are carried out
on sequences of meshes with the maximal number of nodes
being 80× 80.

Along with the numerical solution of the Schrödinger
equation the key element for solving the problem of the
ground state electronic configurations is a proper choice of
the configurations, which could potentially be the ground
state ones. In reference [17] a strategy was developed
which enables one to reduce the set of possible ground
state configurations subject to a following numerical in-
vestigation. This removes the risk of missing some ground
state configurations due to the limited possibilities of per-
forming numerical investigations. The above-mentioned
strategy is based on a combination of qualitative theoret-
ical arguments and numerical calculations of the energies
of electronic configurations. As a first step the set of rel-
evant electronic configurations has to be separated into
several groups according to their spin projections Sz. It
turns out that it is most appropriate to start with the
limit of infinite strong fields and analyse the electronic
configurations with decreasing field strengths. Arguments
based on the geometry of the spatial part of the wavefunc-
tion allow us to determine the ground state for the high-
field limit as well as several candidates for the ground state
configuration with decreasing field strength. The following
numerical calculations allow to decide which of these can-
didates becomes the actual first intermediate ground state
and yield the transition field strength. The knowledge of
the first intermediate ground state allows us to repeat the
above procedure in order to identify the second intermedi-
ate ground state from a list of candidates. Repeating this
as many times as necessary the full sequence of the ground
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state configurations for each subset Sz is determined and
finally the sequence of all ground state configurations of
the atomic system is obtained.

3 Ground state electronic configurations
for γ = 0 and γ →∞

In this section we discuss some important properties of
ground states of multi-electron atoms in the limits γ = 0
and γ →∞.

For the case γ = 0 the ground state configuration of the
beryllium atom can be characterised in the framework of
the restricted Hartree-Fock approach as 1s22s2. The latter
is an approximation of limited quality in describing the
beryllium atom as it was shown in many fully correlated
calculations for the field-free Be atom. For the extensive
literature on the electronic structure of the Be atom we
refer the reader to reference [25] and the references therein.
It was pointed out in these works that the Be atom is a
strongly correlated system and that the HF ground state
wavefunction (i.e. the spherically symmetric 1s22s2) is not
a very accurate zeroth-order wavefunction, especially for
calculations of electric polarisabilities. In a Hartree-Fock
language this is due to a significant contribution of the
1s22p2 configuration to the ground state wave function
(precision calculations require of course a huge number
of configurations). The latter configuration is evidently a
non-spherical one.

Our Hartree-Fock energy for the ground state of the
Be atom in field-free space is −14.57336 a.u. compared to
the exact nonrelativistic energy −14.66735 a.u. The miss-
ing correlation therefore amounts to 0.09399 a.u. Without
doubt effects due to correlation are crucial for the correct
description of many physical phenomena. For the present
purpose however, i.e. a first investigation and clarification
of global ground state properties in magnetic fields of ar-
bitrary strength, they are of minor importance. Only in
case one would like to obtain more accurate energies or
other properties a study including correlation would be
indispensable.

It is evident that the field-free ground state of the
beryllium atom remains the ground state only for rela-
tively weak fields. The set of one-electron wave functions
constituting the HF ground state for the opposite case
of extremely strong magnetic fields can be determined as
follows. The nuclear attraction energies and HF poten-
tials (which determine the motion along z-axis) are small
for large γ in comparison to the interaction energies with
the magnetic field (which determines the motion perpen-
dicular to the magnetic field and is responsible for the
Landau zonal structure of the spectrum). Thus, all the
one-electron wavefunctions must correspond to the lowest
Landau zones, i.e. the magnetic quantum numbers mµ for
all electrons obey mµ ≤ 0, and the system must be fully
spin-polarised, i.e. szµ = −1/2. For the Coulomb central
field the one-electron levels form (as B → ∞) quasi 1D
Coulomb series with the binding energy εB = 1/2n2

z for
nz > 0 and εB → ∞ for nz = 0, where nz is the number

of nodal surfaces of the wave function with respect to the
z-axis. The binding energy of a separate electron has the
form

εB = (m+ |m|+ 2sz + 1)γ/2− ε (2)

where ε is the energy of the electron.
When considering the case γ → ∞ it is evident, that

the wave functions with nz = 0 have to be chosen for
the ground state configuration. Furthermore starting with
the energetically lowest one particle level the electrons
occupy according to the above arguments orbitals with
increasing absolute value of the magnetic quantum num-
ber mµ. Consequently the ground state of the beryllium
atom must be given by the fully spin-polarised configu-
ration 1s2p−13d−24f−3. In our notation of the electronic
configurations we assume in the following that all paired
electrons, like for example the 1s2 part of a configuration,
are of course in a spin up and spin down orbital, respec-
tively, whereas all unpaired electrons possess a negative
projection of the spin onto the magnetic field direction.
On a qualitative level the configuration 1s2p−13d−24f−3

is not very different from similar electronic configurations
for other atoms (see Ref. [20]). This is a manifestation of
the simplification of the picture of atomic properties in
the limit γ → ∞ where a linear sequence of electronic
configurations replaces the periodic table of elements of
the field-free case.

4 Ground state electronic configurations
for arbitrary field strengths

In order to determine the ground state electronic config-
urations of the beryllium atom we employ the strategy
introduced in reference [17] and summarized in Section 2.
First of all, we divide the possible ground state config-
urations into three groups according to their total spin
projection Sz: the Sz = 0 group (low-field ground state
configurations), the intermediate group Sz = −1 and the
Sz = −2 group (the high-field ground state configura-
tions). For the following investigation it is expedient to
introduce local ground states for each Sz subset which
are the energetically lowest states with a certain Sz value
along with the global ground state of the atom. Of course,
for each value of the field strength one of the local ground
states represents the global ground state of the atom.

From Section 3 we know that the ground state config-
uration of the beryllium atom in the high field limit must
be the fully spin-polarised state 1s2p−13d−24f−3. The op-
timal strategy to determine the sequence of ground state
configurations of the atom with decreasing field strength is
a repeating procedure starting from the high field ground
state. It consists of both qualitative arguments based on
the geometry of the orbitals which yield a preliminary list
of relevant configurations as well as subsequent calcula-
tions on these configurations. The total energies for the
considered states and particularly of those states which
become the global ground state of the atom for some
regime of the field strength are illustrated in Figure 1.
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Fig. 1. The total energies (in atomic units) of the states of
the beryllium atom as functions of the magnetic field strength
considered for the determination of the ground state elec-
tronic configurations. The field strength is given in units of
γ = (B/B0), B0 = ~c/ea2

0 = 2.3505 × 105 T.

Following the above procedure let us consider other possi-
ble candidates in question for the electronic ground state
for Sz = −2 (see Fig. 1) with decreasing field strength. A
study of the high-field regime was carried out in reference
[20]. In particular, we have found in reference [20] that the
beryllium atom, opposite to the carbon atom and other
heavier elements has only one fully spin-polarised ground
state configuration. Let us describe the arguments leading
to this conclusion here in more detail.

All the one electron wave functions of the high-field
ground state 1s2p−13d−24f−3 possess no nodal surfaces
crossing the z-axis and occupy the energetically lowest
orbitals with magnetic quantum numbers ranging from
m = 0 down to m = −3. The 4f−3 orbital possesses
the smallest binding energy of all orbitals constituting
the high-field ground state. Its binding energy decreases
rapidly with decreasing field strength. Thus, we can ex-
pect that the first crossover of ground state configurations
happens due to a change of the 4f−3 orbital into one pos-
sessing a higher binding energy at the corresponding low-
ered field strength. One may think that the first transition
while decreasing the magnetic field strength will involve
a transition from an orbital possessing nz = 0 to one for
nz = 1. The energetically lowest available one particle
state with nz = 1 is the 2p0 orbital. Another possible or-
bital into which the 4f−3 wave function could evolve is the
2s state. For the hydrogen atom or hydrogen-like ions in
a magnetic field the 2p0 is stronger bound than the 2s or-
bital. On the other hand, owing to the electron screening
in multi-electron atoms in field-free space the 2s orbital
tends to be more tightly bound than the 2p0 orbital. Thus,
two states i.e. 1s2p02p−13d−2 and 1s2s2p−13d−2 are can-
didates for becoming the ground state in the Sz = −2 set
when we lower the field strength coming from the high
field situation. The numerical calculations show that the
first crossover of the Sz = −2 subset takes place between

the 1s2p−13d−24f−3 and 1s2p02p−13d−2 configurations
(Fig. 1). On the other hand, the calculations show that
even earlier (i.e. at higher magnetic field strengths) the
global ground state acquires the total spin Sz = −1 due
to a crossover of the energy curve of the 1s2p−13d−24f−3

configuration with that of the configuration 1s22p−13d−2

(which is the local ground state for the Sz = −1 sub-
set in the high-field limit). For the fields below this point
γ = 4.567 the ground state electronic configurations of
the beryllium atom belong to the subset Sz = −1. This
means that, as mentioned above, the beryllium atom has
only one fully spin polarised ground state configuration.

The electronic configurations 1s22p−13d−2 and
1s2p−13d−24f−3 differ by the replacement of the spin
down 4f−3 orbital through the spin up 1s orbital and
according to the arguments presented in the previous
sections the 1s22p−13d−2 represents the local ground state
configuration for the subset Sz = −1 in the limit γ →∞.
Analogous arguments to that presented in the previous
paragraph provide the conclusion, that with decreasing
field strength the 1s22p−13d−2 ground state electronic
configuration can be replaced either by the 1s22s2p−1

or by the 1s22p02p−1 configuration. The numerical
calculations show, that the curve E1s22s2p−1(γ) intersects
the curve E1s22p−13d−2(γ) at a higher magnetic field
(γ = 0.957) than E1s22p02p−1(γ) crosses E1s22p−13d−2(γ).
The difference with respect to the order of the local
ground state configurations in the subsets Sz = −2 and
Sz = −1 stems from the difference in the magnetic field
strengths characteristic for the crossovers in these subsets.
At moderate field strengths (Sz = −1) the influence of
the Coulomb fields of the nucleus and electrons prevails
over the influence of the magnetic field and make the
energy of the 2s orbital lower than that of the 2p0 orbital.
On the other hand, at stronger fields characteristic for
the subset Sz = −2 the energies of these orbitals are
governed mostly by the magnetic field and, in result, the
energy of the 2p0 orbital becomes lower than the energy
of the 2s orbital.

From our simple qualitative considerations we can con-
clude, that the configuration 1s22s2p−1 is the local ground
state configuration of the subset Sz = −1 for the weak
field case, i.e. for γ → 0. Indeed, when we construct such
a configuration, the first three electrons go to orbitals 1s
and 2s forming the 1s22s configuration with Sz = −1/2.
The fourth electron must then have the same spin as the
2s orbital electron to obtain the total spin value Sz = −1.
Thus, the lowest orbital which it can occupy is the 2p−1.
Therefore, there are two local ground state configura-
tions in the subset Sz = −1 and they both represent the
global ground state for some ranges of the magnetic field
strengths.

The necessary considerations for the subset Sz = 0
are quite simple. At γ = 0 and, evidently, for very weak
fields the ground state of the beryllium atom has the con-
figuration 1s22s2. We can expect, that when increasing
the magnetic field strength, the next lowest state with
Sz = 0 will be the 1s22s2p−1 configuration with oppo-
site directions of the spins of the 2s and 2p−1 electrons.
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Table 1. The Hartree-Fock ground state configurations of the
beryllium atom in external magnetic fields. The configurations
presented in the table are the ground state configurations for
γmin ≤ γ ≤ γmax. Atomic units are used.

no. γmin γmax The ground state M Sz E(γmin)
configuration

1 0 0.0412 1s22s2 0 0 −14.57336
2 0.0412 0.957 1s22s2p−1 −1 −1 −14.57098
3 0.957 4.567 1s22p−13d−2 −3 −1 −15.13756
4 4.567 ∞ 1s2p−13d−24f−3 −6 −2 −15.91660

But both contributions, the Zeeman spin term and the
electronic exchange make the energy of this state higher
than the energy of the state 1s22s2p−1 with the parallel
orientation of the spins of the 2s and 2p−1 electrons (i.e.
Sz = −1) considered above. The calculated energies for
these states are presented in Figure 1. Thus, the beryllium
atom has one ground state electronic configuration 1s22s2

with the total spin z-projection Sz = 0. This state is the
global ground state for the magnetic field strengths be-
tween γ = 0 and γ = 0.0412. Above this point the ground
state configuration is 1s22s2p−1 with Sz = −1. Therefore
the beryllium atom has four different electronic ground
state configurations in the complete regime 0 < γ < ∞
which are summarized in Table 1. We remark that corre-
lation effects will change the values of the field strengths
of the crossovers to some limited extent but certainly not
the (qualitative) conclusions drawn above.

The next aim of this section is the corresponding in-
vestigation of the ground state configurations of the ion
Be+. The field-free ground state of this ion corresponds
to the 1s22s configuration (Sz = −1/2 and M = 0). In
the opposite case γ → ∞ the ground state is obviously
given by the 1s2p−13d−2 configuration (Sz = −3/2 and
M = −3). Thus, we need to investigate only two dif-
ferent subsets of electronic ground state configurations:
Sz = −1/2 and Sz = −3/2. The energy curves which are
necessary for this investigation are presented in Figure 2.
The subset Sz = −1/2 contains only two possible ground
state configurations 1s22s and 1s22p−1. The latter is the
local ground state configuration for this subset in the limit
γ → ∞. The curves E1s22s(γ) and E1s22p−1(γ) intersect
at γ = 0.3185 and above this point E1s22p−1 < E1s22s. In
the subset Sz = −3/2 we have to consider the configu-
rations 1s2p02p−1 and 1s2s2p−1 along with the high-field
ground state configuration 1s2p−13d−2. But the numeri-
cal calculations show that the energies of both 1s2p02p−1

and 1s2s2p−1 lie above the energy of the 1s2p−13d−2 con-
figuration at the intersection point (γ = 4.501) between
E1s2p−13d−2(γ) and E1s22p−1(γ). Thus, the ion Be+ pos-
sesses three different electronic ground state configura-
tions in external magnetic fields which are summarised
in Table 2. The set of the electronic ground state config-
urations for the Be+ ion appears to be qualitatively the
same as for the lithium atom [16]. The field strengths for
the corresponding transition points are roughly two times
higher for the Be+ ion compared to the Li atom.
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Table 2. The Hartree-Fock ground state configurations of the
Be+ ion in external magnetic fields. The configurations pre-
sented in the table are the ground state configurations for
γmin ≤ γ ≤ γmax. Atomic units are used.

no. γmin γmax The ground state M Sz E(γmin)
configuration

1 0 0.3185 1s22s 0 −1/2 −14.27747
2 0.3185 4.501 1s22p−1 −1 −1/2 −14.38602
3 4.501 ∞ 1s2p−13d−2 −3 −3/2 −15.01775

5 Selected quantitative aspects

In Tables 3 and 4 we present the total energies of the
four ground state electronic configurations of the beryl-
lium atom and the three ground state electronic configu-
rations of the ion Be+, respectively. These data cover a
very broad range of the field strengths from γ = 0 and
very weak magnetic fields starting with γ = 0.001 up to
extremely strong fields γ = 10000. The latter value of the
field strength can be considered as a rough limit of appli-
cability of the non-relativistic quantum equations to the
problem (see below).

So far there exist three works which should be men-
tioned in the context of the problem of the beryllium atom
in strong magnetic fields. Reference [19] deals with the
1s22s2 state of this atom in fields 0 ≤ γ ≤ 1000 and refer-
ence [20] investigates the ground state energies of atoms
with nuclear charge number Z ≤ 10 in the high-field,
i.e. fully spin polarised regime. Both these works contain
calculations carried out by the method used in the cur-
rent work and do not represent a basis for comparison.
The comparison of our results with an adiabatic Hartree-
Fock calculation of atoms with Z ≤ 10 [26] is presented
in [20] and we can briefly summarise this comparison for
two values of the magnetic field strengths: for B12 = 0.1
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Table 3. The total energies of the ground state configurations of the beryllium atom depending on the magnetic field strength.
Atomic units are used.

γ E(1s22s2) E(1s22s2p−1) E(1s22p−13d−2) E(1s2p−13d−24f−3)

0.000 −14.57336 −14.51206 −14.19023 −9.44321

0.001 −14.57336 −14.51357 −14.1928 −9.4483

0.002 −14.57335 −14.51507 −14.1952 −9.4532

0.005 −14.57332 −14.51953 −14.2025 −9.4675

0.01 −14.57322 −14.52690 −14.2142 −9.4903

0.02 −14.57279 −14.54138 −14.2361 −9.5331

0.05 −14.56986 −14.58281 −14.29437 −9.6493

0.07 −14.56657 −14.60879 −14.32933 −9.7198

0.15 −14.54367 −14.70108 −14.45145 −9.9692

0.3 −14.46861 −14.83520 −14.63369 −10.36220

0.3185 −14.84905

0.5 −14.32860 −14.96264 −14.82272 −10.80901

1.0 −13.89120 −15.14899 −15.16178 −11.72880

2.0 −12.88908 −15.30815 −15.57496 −13.16961

4.501 −15.91626

5.0 −9.40602 −15.25183 −15.91027 −16.30690

10.0 −2.5988 −14.03046 −15.04644 −20.01753

20.0 +12.8201 −9.49118 −10.97100 −25.23250

40.0 +46.5935 +3.04026 +0.95677 −32.28415

50.0 +64.186 +10.1472 +7.83395 −35.00768

100.0 +155.286 +49.4177 +46.25962 −45.10519

200.0 +343.899 +135.659 +131.4188 −58.08264

500.0 +924.20 +411.830 +405.7027 −80.67357

1000.0 +1905.14 +888.70 +880.706 −102.75480

2000.0 +3881.5 +1860.40 +1850.052 −129.9790

5000.0 +4813.56 +4799.35 −175.2704

10000.0 +9770.37 +9752.24 −217.695

(i.e. B = 0.1 × 1012 G) our result is E = −0.89833 keV
whereas reference [26] yields E = −0.846 keV; for B12 = 5
(i.e. B = 5 × 1012 G) our result is E = −3.61033 keV,
whereas reference [26] yields E = −3.5840 keV. This com-
parison allows us to draw the conclusion of a relatively low
precision of the adiabatic approximation for multi-electron
atoms even for relatively high magnetic fields.

In Figure 3 we present the ionisation energy Eion of the
beryllium atom depending on the magnetic field strength.
This continuous dependence is divided into six parts cor-
responding to different pairs of the ground state configu-
rations of the Be atom and Be+ ion involved into the ion-
isation energy. The five vertical dotted lines in Figure 3
mark the boundaries of these sections. The alteration of
the sections of growing and decreasing ionisation energy
originates from different dependencies of the total ener-
gies of the Be and Be+ on the magnetic field strength for
different pairs of the ground state configurations of these
two systems. One can see the sharp decrease of the ion-
isation energy between the crossovers (4) and (5). This
behaviour is due to the fact that Eion is determined in
this section by the rapidly decreasing total energy of the
state 1s2p−13d−2 of the Be+ ion (Fig. 2) and by the en-

ergy of the Be atom in the state 1s22p−13d−2 which is very
weakly dependent on the field strength (Fig. 1). Another
remarkable feature of the curve Eion(γ) is its behaviour
in the range of field strengths between the transitions (2)
and (3). The ionisation energy in this region contains a
very shallow maximum and in the whole section it is al-
most independent of the field. Thus, the ionisation energy
is stationary in this regime of field strengths γ = 0.3–
0.5 a.u.

The above-discussed properties are based on the be-
haviour of the total energy of the Be atom and Be+ ion.
On the other hand, the behaviour of the wavefunctions
and many intrinsic characteristics of atoms in external
magnetic fields are associated not with the total energy,
but with the binding energies of separate electrons (2) and
the total binding energy of the system

EB =
N∑
µ=1

(mµ + |mµ|+ 2szµ + 1)γ/2−E (3)

where N is the number of electrons. The binding ener-
gies of the ground state electronic configurations of Be
and Be+ depending on the magnetic field strength are
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Table 4. The total energies of the ground state configura-
tions of the Be+ ion depending on the magnetic field strength.
Atomic units are used.

γ E(1s22s) E(1s22p−1) E(1s2p−13d−2)

0.000 −14.27747 −14.13093 −9.41056

0.001 −14.27797 −14.13195 −9.41358

0.002 −14.27846 −14.13294 −9.41657

0.005 −14.27995 −14.13593 −9.42551

0.01 −14.28241 −14.14087 −9.44028

0.02 −14.28725 −14.15066 −9.46939

0.0412 −14.29714

0.05 −14.30111 −14.17916 −9.55332

0.1 −14.32207 −14.22390 −9.68356

0.2 −14.35648 −14.30406 −9.91878

0.4 −14.40046 −14.43599 −10.32817

0.5 −14.41282 −14.49163 −10.51259

0.957 −14.69069

1.0 −14.41478 −14.70591 −11.31312

2.0 −14.28225 −14.95181 −12.59206

4.567 −15.07310

5.0 −13.55019 −14.96820 −15.42817

10.0 −11.57652 −13.75773 −18.820184

20.0 −6.03364 −9.217910 −23.612005

50.0 +15.4261 +10.42836 −32.61959

100.0 +56.5516 +49.70820 −41.93414

200.0 +145.1649 +135.95916 −53.90638

500.0 +425.471 +412.14745 −74.73619

1000.0 +906.37 +889.0264 −95.07513

2000.0 +1883.08 +1860.7100 −120.11947

5000.0 +4844.6 +4814.005 −161.7052

10000.0 +9809.3 +9770.643 −200.5709
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Fig. 3. Be atom ground state ionisation energy EI. Transi-
tion points are marked by broken vertical lines. The sequence
of the transitions are (from left to right): 1 – Be: 1s22s2 −→
1s22s2p−1; 2 – Be+: 1s22s −→ 1s22p−1; 3 – Be: 1s22s2p−1 −→
1s22p−13d−2; 4 – Be+: 1s22p−1 −→ 1s2p−13d−2; 5 – Be:
1s22p−13d−2 −→ 1s2p−13d−24f−3. Crossovers (4) and (5) take
place at relatively close values of γ and are not resolved in the
figure.
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Fig. 5. The binding energies (in atomic units) of the ground
state electronic configurations of the Be+ ion depending on the
magnetic field strength. The field strength is given in units of
γ = (B/B0), B0 = ~c/ea2

0 = 2.3505 × 105 T.

presented in Figures 4 and 5. These dependencies at very
strong magnetic fields may illustrate our considerations of
the previous sections. One can see in Figure 4 that the
high-field ground state 1s2p−13d−24f−3 is not the most
tightly bound state of the beryllium atom. For all the val-
ues of the magnetic fields considered in this paper its bind-
ing energy is lower than that of the states 1s22s2p−1 and
1s22p−13d−2 and for γ < 100 it is lower than EB1s22s2 .
The latter circumstance can be easily explained by the fact
that the 1s22s2 configuration contains two tightly bound
orbitals 1s whereas the 1s2p−13d−24f−3 configuration
possesses only one such orbital. However, with increas-
ing magnetic field strengths the contribution of the group
of orbitals 2p−13d−24f−3 to the binding energy turns out
to be larger than that of the 1s2s2 group. Analogously



286 The European Physical Journal D

�� �� � � �
��

��

�

�

�

]

�� �� � � �
��

��

�

�

�

�� �� � � �
��

��

�

�

�

]

�� �� � � �
��

��

�

�

�

�� �� � � �
��

��

�

�

�

]

�� �� � � �

[

��

��

�

�

�

]

�� �� � � �

[

��

��

�

�

�
�� �� � � �

��

��

�

�

�

Fig. 6. Contour plots of the total electronic densities for the
ground state of the beryllium atom. For neighbouring lines the
densities are different by a factor of 2. The coordinates z, x as
well as the corresponding field strengths are given in atomic
units. Each row presents plots for a ground state configuration
at its lower (left) and upper (right) intersection points. Rows:
1 – 1s22s2: γ = 0 and γ = 0.0412; 2 – 1s22s2p−1: γ = 0.0412
and γ = 0.957; 3 – 1s22p−13d−2: γ = 0.957 and γ = 4.567; 4 –
1s2p−13d−24f−3: γ = 4.567 and γ = 500.

we can expect EB1s2p−13d−24f−3 > EB1s22s2p−1 at some
very large fields γ > 10000. On the other hand, it is ev-
ident that the state 1s2p−13d−24f−3 must be less bound
than 1s22p−13d−2 because both these configurations are
constructed from orbitals with binding energies, logarith-
mically increasing as γ → ∞, but the 1s22p−13d−2 con-
tains an additional 1s orbital, which is more tightly bound
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Fig. 7. Contour plots of the total electronic densities for the
ground state of the beryllium positive ion. For neighbouring
lines the densities are different by a factor of 2. The coordinates
z, x as well as the corresponding field strengths are given in
atomic units. Each row presents plots for a ground state config-
uration at its lower (left) and upper (right) intersection points.
Rows: 1 – 1s22s: γ = 0 and γ = 0.3185; 2 – 1s22p−1: γ = 0.3185
and γ = 4.501; 3 – 1s2p−13d−2: γ = 4.501 and γ = 500.

than 4f−3 for arbitrary field strengths. The plot for the
Be+ ion (Fig. 5) illustrates the same features and one can
see in this figure almost parallel curves EB1s22p−1(γ) and
EB1s2p−13d−2(γ) in the strong field regime.

Figures 6 and 7 allow us to add some details to the con-
siderations of the previous section. These figures present
spatial distributions of the total electronic densities for the
ground state configurations of the beryllium atom and its
positive ion, respectively. These pictures allow us to gain
insights into the geometry of the distribution of the elec-
tronic density in space and in particular its dependence
on the magnetic quantum number and the total spin. The
first pictures in these figures present the distribution of
the electronic density for the ground state for γ = 0. The
following pictures show the distributions of the electronic
densities for values of the field strength which mark the
boundaries of the regimes of field strengths belonging to
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the different ground state configurations. For the high-
field ground states we present the distribution of the
electronic density at the crossover field strength and for
γ = 500. For each configuration the effect of the increas-
ing field strength consists in compressing the electronic
distribution towards the z-axis. However the crossovers
of ground state configurations involve the opposite effect
due to the fact that these crossovers are associated with
an increase of the total magnetic quantum number M .

In the first rows of Figures 6 and 7 one can see a dense
core of 1s2 electrons inside the bold solid line contour and
a diffuse distribution of 2s electrons outside this core. This
contour roughly corresponds to a maximum of the electron
density formed by the 2s electrons at γ = 0. The prolate
shape of the bold solid line contour in the first plot of Fig-
ure 6 (1s22s2, γ = 0) reflects the non-spherical distribu-
tion of the 2s electrons in our unrestricted HF calculations
or the admixture of the 1s22p2

0 configuration to the 1s22s2

one from the point of view of the multi-configurational
approach [25].

Some additional comments concerning the results pre-
sented above are in order. First, our HF results do not
include the effects of correlation. To take into account
the latter would require a multi-configurational approach
which goes beyond the scope of the present paper. We,
however, do not expect that the correlation energy changes
our main conclusions like, for example, the fact of the
crossovers with respect to the different ground states con-
figurations. With increasing field strength the effective one
particle picture should be an increasingly better descrip-
tion of the wave function and the percentage of the corre-
lation energy should therefore decrease (see Ref. [23] for
an investigation on this subject). Two other important
issues are relativistic effects and effects due to the finite
nuclear mass. Both these points are basically important
for very high magnetic field strengths and they have been
discussed in reference [20]. Even for γ = 104 a.u. the rela-
tive change of the total energy (E ∝ γ) due to relativistic
corrections is of the order of 10−4. Since the ionisation
energy of the Be atom for this field strength is approxi-
mately 20 a.u. we can suspect that for γ ≥ 103–104 a.u.
relativistic corrections become significant. However, for a
definite clarification fully relativistic many-body calcula-
tions would have to be performed in the high field regime.

6 Summary and conclusions

We have applied our 2D mesh Hartree-Fock method to the
magnetised neutral beryllium atom and beryllium positive
ion. The method is flexible enough to yield precise results
for arbitrary field strengths and our calculations for the
ground and several excited states are performed for mag-
netic field strengths ranging from zero up to 2.3505×109 T
(γ = 10000). Our considerations focused on the ground
states and their crossovers with increasing field strength.
The ground state of the beryllium atom undergoes three
transitions involving four different electronic configura-
tions. For weak fields up to γ = 0.0412 the ground state
arises from the field-free ground state configuration 1s22s2

with the total spin z-projection Sz = 0. With increas-
ing strength of the field two different electronic configu-
rations with Sz = −1 consequently become the ground
state: 1s22s2p−1 and 1s22p−13d−2. At γ = 4.567 the last
crossover of the ground state configurations takes place
and for γ > 4.567 the ground state wavefunction is repre-
sented by the high-field-limit fully spin polarised configu-
ration 1s2p−13d−24f−3, Sz = −2.

For the ion Be+ we obtain three different ground state
configurations possessing two values of the spin projection.
For fields below γ = 0.3185 the ground state electronic
configuration has the spin projection Sz = −1/2, magnetic
quantum number M = 0 and qualitatively coincides with
the zero-field ground state configuration 1s22s. Between
γ = 0.3185 and γ = 4.501 the ground state is represented
by another configuration with Sz = −1/2, i.e. 1s22p−1

(M = −1). Above the point γ = 4.501 the fully spin
polarised high-field-limit configuration 1s2p−13d−2 (Sz =
−3/2) is the actual ground state of the Be+ ion. Thus, the
sequence of electronic ground state configurations for the
Be+ ion is similar to the sequence for the Li atom [16].
We present detailed tables of energies of the ground state
configurations for Be and Be+.

For Be and Be+ we have presented also the binding
energies of the ground state configurations dependent on
the magnetic field strength and maps of electronic densi-
ties for these configurations. For the Be atom we present
its ionisation energy dependent on the field strength.

Our investigation represents the first conclusive study
of the ground state of the beryllium atom and Be+ ion
for arbitrary field strengths. For the Be atom we have ob-
tained a new sequence of electronic configurations with
increasing field strength. This sequence does not coincide
with any such sequences obtained previously for other
atoms and ions and could not be predicted even qual-
itatively without detailed calculations. Putting together
what we currently know about ground states of atomic
systems in strong magnetic fields we can conclude that
the H, He, Li, Be, C, He+, Li+ and Be+ ground states
have been identified. For other atoms and multiple series
of ions the question about the ground state configurations
is still open.

Finally we remark that the present approach (UHF)
also yields certain excited states but only on a qualitative
level. To meet astrophysical requirements, however, a high
precision is required for many excited states. In principal
it is possible to extend our method in order to include
correlation effects and the complete excitation spectrum
by superimposing many (excited) determinants and per-
forming a so-called configuration interaction calculation.
This means however a substantial conceptual and pro-
gramming effort and goes beyond the scope of the present
investigation.
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